

Go
programming language

The Ultimate Beginner's Guide to Learn Go Programming Step
by Step

By John Bach

3 nd Edition

"Programming isn't about what you know; it's
about what you can figure out . ” - Chris Pine

Memlnc.com

Introduction …………………..………….………5

Chapter I
General concepts……………………….………6
Chapter II
Understanding go………………………..…….19
Chapter III
Writing the first program………………...….…..34
Chapter IV
the rules……………………………………….…..53
Chapter VI
Create Backend…………………..………………84

Introduction

You may have heard in the last few years about a new programming
language that originated from within Google called Go (or Golang as
a searchable term for search engines), through this book we will try
to identify this language, its advantages, disadvantages and what
makes it different from others. The first chapter of this book will be a
verbal lesson only, focusing on the points of difference of language
with the rest of the languages, and is directed to those with some
programming background with the rest of the languages, but the rest
of the lessons will be directed to beginners.

Chapter One
General concepts

As usual every decade, there are new tools and techniques that try
to take advantage of the mistakes of their ancestors from tools and
techniques. And "What is the need for a new programming
language?" Or "Why don't they agree on a single programming
language?", A programming language is just a tool for your tasks,
each of which is more appropriate for a task. Choose for each task
the most appropriate tool, and there is no need to sanctify the tool
and the establishment of war wars - non-technical - around them or
create an imaginary obsession prevents learning.

A team of programmers from within Google felt it was time to
improve their workflow in C and ++ C, and they needed a new tool
that eliminated the flaws of those two, further improved their
productivity, and was relevant to the quality of Google's
computational needs. They founded the Go programming language
within Google in 2007. The long established team of the language
includes Unix's founder, Ken Thompson (a computer science, Ken)
who worked for Bell Labs, and Robert Pike, who was also part of
Bell's Unix team. Labs, one of the founders of the UTF-8 codec, and
finally Robert Griesemer is a V8 JavaScript engine worker.

Knowing this simple historical overview of Go, I like to kill you all
overly enthusiastic, I don't like you to love programming language
because of its founders, or it came out of a company you love, so I
will start to list things you may not like about the programming
language Go, even if you did not like it , You might want to stop
reading. I would be personally happy to see very few readers of this
series really knowing what they are doing, rather than a momentum
enthusiastic about everything new without awareness and
knowledge of things.

Things you may not like about the Go programming language

1. Object-oriented is not

If you think it is, there is no concept of Class or Objects and
therefore there is no inheritance. However, Go carries some of the
advantages of object-oriented programming such as the provision of
Interface, Structural Functions, and Struct composition.

Why? The founders of language believe that object-oriented
languages carry many flaws and complexities that can be eliminated
by abandoning some of these concepts altogether. Even Java
programmers themselves recommend Composition, for example,
more often than inheritance, language founders who believe that
object-oriented programming is often a bad idea, technically.

2. No Exception Handling handled

This may be a corollary due to the absence of Go's concept of object
programming. Go errors are handled in a fairly traditional way, since
errors are returned as normal error values. Where error is a primitive
type in itself as any other native type (int, string .. etc). However, Go
allows you to throw an error for exceptional cases via the keyword
panic (similar to raise or throw in other languages) as well as recover
from these errors by recover.

3. No default or optional arguments can be
passed to functions (default / optional
arguments)

In other programming languages, you might be used to doing
something like:

function listFolders (path, subfolders = false, recursive = false) {...}

In Go, however, you cannot pass subfolder = false nor recursive =
false as a sign to the listFolders function because it will not accept
such default / optional parameters, resulting in a compile error.

Why? Language founders believe that these behaviors contribute to
building unstable APIs or make their behavior unpredictable. In our
previous example, for example, they prefer to write the function
without default operators, ie:

func listFolders (path string, subfolders bool, recursive bool) {...}

This forces you to write the behavior you want from the function
explicitly instead of letting the code interface dictate you to act as the
default, this to reduce human errors. This may also prompt you to
write three functions, each with its own distinct behavior, for
example: listFolders, listFoldersRecursivly and
listFoldersWithFirstLevelSubFolders.

4. No Overloading feature

For the same reasons, there is no Method overloading, ie you cannot
redefine a function with the same name but with a different
signature. For example, if there is a function named:

func listFolders (path string) {...}

You cannot create another function with the same name but with a
different signature such as:

func listFolder (path string, level int) {...}

You should change its name to:

dunc listFolderToLevel (path string, level int) {...}

However, there is an indirect way to make a function accept arbitrary
values by making the {} interface type signature we will look at in the
next lessons.

5. No generics

Other languages enable you to write generic functions or classes,
where you do not declare the type of parameters you accept but
leave them to know the type of parameters later when you call them.
A type to be determined, so <List> String or <List> Integer can be
easily created while maintaining the same functions and operations
that can be performed on the List in general.

There is no Go like this, and instead there is a {} interface as a
universal type that satisfies all types, but it is not a perfect alternative
to Generics.

Why? The reason for the lack of Generics in Go is that its founders
have not yet figured out the most appropriate way for them to add
this feature to the language without increasing load during run-time.

6. Go is a boring language and is not the best
programming language!

Because of the simplicity of language and nothing new, many
consider it a boring language. The number of keywords and their
original types is small compared to other languages, and they greatly
reduce the existence of more than one way of doing a task. It doesn't
even have a while loop and is limited to a for loop. Many consider
this a feature of language, but I mentioned it to you so you don't
expect anything new to show off.

Also, the language will not allow you to leave a variable without
using or importing an unused import / variable and the compiler will
never accept it.

7. Stubborn language

The founders of language are firm in their opinion and decisions in
the design of the language, do not expect significant changes that
may occur in the short or medium term in the language or changes in
the way things do and the behavior of the compiler. There is no need
to open blank discussions about language design and its flaws
unless you are at the same level of experience and wisdom.

They themselves declare this, and remember that there are other
options and programming languages if you don't like Go.
8. There is no consensus on a single package manager

Python has pip, javascript has npm, and other languages have a
popular or agreed package manager, Go is not without a package
manager, it has a lot of it, but it has not yet agreed on a single
package manager or how to get and list the dependencies In a
standard way, but recently it is done through the concept of
Vendoring.

These eight things, for the male and not limited to the harshest
criticism of Go as a programming language, if you agree it may not
suit you language, and if you feel that behind it wisdom - like me -
continue reading the chapter on things you may like about Go.

Things You May Like About the programming language Go

1. Light parallel threads (goroutines)

Go allows you to run parallel processing and simply take full
advantage of your CPU, as it has the so-called goroutine, a parallel
thread that is lighter than thread in other languages. This allows you
to release tens of thousands of parallel threads (instead of just tens
or hundreds of threads) without having to create them and make
them communicate or complement each other. It is enough, for
example, to create a function that works in a thread alone by going
with the keyword go, for example:

go func () {// A nasty function that does things in a thread alone
....

}

This allows writing high-performance applications much easier.

2. Fast compiled language

Unlike Ruby, Python, Java and PHP, Go is an assembly language.
The final output of your program will be a stand-alone executable
containing all the dependencies needed to run it without the need for
external dependencies. This is very useful in web development, for
example, to eliminate or reduce dependency problems.).

This feature also facilitates the deployment of your application
(deployment) where you will have to just transfer the executable to
the server for example, then run it and enough. No need to install
anything else to run your software, no need to even install Go on the
server itself.

It may come to mind that compiling can take time, especially if the
size of the program is large, but the fact that Go is very fast and
often you won't even notice it.

3. Productive language

Because it's a boring language, it narrows you to argue with your co-
worker or someone working with you on the project or looking for the
best-amazing way to do something, everything is simple and clear.

4. Multiple platforms par excellence

The same software can be reassembled to run on Windows, Linux,
Mac OSx or even smartphones and ARM architecture. Even after
version 1.5 of Go you can create an executable file for all platforms
through the platform you are in, for example through the Linux
system can create an executable file for Windows and Mac OS
without the need to be on that system.

5. Rich Standard Library

Despite the novelty of language, its standard library has made
progress in a standard circumstance. It is often advised to rely on the
standard library as much as possible, as it contains many things
needed by most types of applications, and even has an HTML
template engine, tools for dealing with json encoding, encryption of
passwords and other usable things in web applications, for example.

6. Unicode everything by default

The subject of encoding strings and how to handle the character
digitally is great, but Go has made everything unicode by default
unless otherwise specified explicitly. Go has a rune type instead of a
char type in the rest of the languages, which is simply an
abbreviation (alias) for the int32 type that only points to the Unicode
encoding point for that character. So the string in Go is a rune string,
not a char string that refers to byte as in C, for example.

7. Good built-in tools

The documentation of your software can be generated by simply
typing a godoc command, improving the formatting by typing gofmt,
or starting code testing procedures (for example, unit testing) by
typing go test, all tools that come with the Go installation.

8. Easy language in terms of writing and
formatting (Syntax)

The format of the language is somewhat similar to Python, where
there is no semicolon after the end of each instruction (;), and a new
variable can be made without specifying its type. : = 35 The int type
will be assigned to the age variable. Also, functions can return more
than one value, such as in Python.

Perhaps the most different thing to other languages is the method of
writing functions, since the value returned by the function is written to
the right of the function (as in Pascal) and not to the left, for
example:

func HelloHsoub () string {
return "Hello Hsoub Academy!"

}

Note that string is written to the right of the function, not to the left of
it, that is, it returns a value of type string. Functions can also return
other functions as a value. Variables can also refer to functions (such
as in JavaScript, Python, etc.).

sayHi: = HelloHsoub

So as not to take sides, these are 8 things you might like.

Chapter II
Understanding go

In the previous chapter, we learned about Go and its differences with
other programming languages. In this chapter, we will try to explain
how to install it, configure and understand its workspace. It is very
important to understand the folder partitioning that the Go
environment dictates to you.

Go has two types of compilers. As a quick reminder, the compiler's
job is to take your code in its purely textual form, and turn it into an
executable (or library) program. One of the Go compilers is the
standard compiler named gc for Go Compiler, and the other is a
compiler that relies on the gcc compiler and what it provides as a
platform and support for more CPU architectures called gccgo.

It should be noted that the gccgo complex is somewhat late in
implanting the full specifications of the newer version of Go. For
example, in writing this lesson, gccgo provides version 1.4.1 of Go,
while gc always provides the latest version (1.5.2) of the language.

I mentioned this for the sake of knowing, in short, if you are not
interested in supporting more architectures or some details of the

gcc platform you will not need gccgo and you will be satisfied with
the standard gc which we will follow throughout this series.

Install Go

As mentioned in the previous lesson, Go is a multi-platform language
par excellence, ready to download and install on your preferred
system for both 32bit and 64bit architectures.

Install Go on Windows and Mac OS

Simply go to the language site and then download the version of
your system. Its installation process is normal and is similar to the
installation of any other regular program.

After installation, make sure the operation was successful by typing
go version or just go on the command line. If you're on Windows,
make sure to close any previously opened command-line window (if
any) and then open a new window.

Install Go on Linux

I advise you to check your package manager before downloading
and installing Go from anywhere else. If you find that your
distribution package manager provides the latest version of Go, it will
be much easier.

If you are on Ubuntu and the distributions based on it, you probably
think that the Go version provided by the apt package manager is
outdated, since the distribution is updated every 6 months or two
years (if it is LTS). So I advise you to install by adding an etherneum
repository.

sudo add-apt-repository -y ppa: ethereum / ethereum
sudo apt-get update
sudo apt-get install golang

The rest of the distributions are supposed to contain the latest
version of Go, then it is enough to install from the package manager,
for example on Arch Linux:

sudo pacman -S go

After installation, make sure that the installation was successful by
typing go version or just go on the command line. You should receive
a similar result to this:

go version go1.5.2 linux / amd64

Understand the work environment

The working environment here is two basic:

A folder on your computer, created anywhere you want, will be a
place for all Go projects.

An environment variable called GOPATH refers to this folder.

Suppose you name the work folder as work, which should also
contain three other subfolders:

A sub-folder called src, where you will place all the code for all of
your Go projects.

A subfolder named bin, where the gc aggregator will transfer
executables generated by your code directly to that folder.

A subfolder named pkg, such as bin but not for executables, if
you write a program that is a library and not an executable program
itself, or fetch an external library via the go get command, it will be
compiled as a library that is placed in that folder so that it can be
easily fetched in other programs without reuse. Compile them each
time (this speeds up the process of compiling your executable that
uses these libraries).

Given the above, the Go environment will be similar to this tree
division:

work folder
├ ── bin # The resulting executables folder
Kg pkg # The resulting program libraries folder
└── src # Our code folder

Is that all? of course not.

Since Go is a relatively recent language, it assumes that you will
host your code in a place (repository), which is usually any
professional programmer, fearing that the code will be lost or shared
with other people. Of course, your code repository will be managed
with a version management tool (VCS) such as Git or Mercurial. The
code may be on your own server, or on a software hosting service
such as Github and Bitbucket.

Since Github is the most popular platform for sharing code, I'll give it
an example.

Go prompts you to place your code in a path similar to your github
account, for example, and even close the image. Suppose your
github account is called HsoubAcademy and your account link is:

https://github.com/HsoubAcademy

If you create a Go project named example for example and then
upload it to Github using your HsoubAcademy account, the project
link is:

https://github.com/HsoubAcademy/example

Go will prompt you to have the project folder on your computer
similar to this link, ie under this path:

work / src / github.com / HsoubAcademy / example

Where:

github.com is a subfolder under the src folder.
HsoubAcademy is a subfolder under the above github.com folder,

for example, change it to your Github account.
example is a subfolder that contains your project files under the

HsoubAcademy folder.

Note: Folder names are case-sensitive except for Windows.

Why arrange the work environment like this?

Simply because organization in this way is very useful in two ways:

1. Any external library can be fetched by simply importing it from its
repository path. For example, suppose that we want to use a library
to decompress the Arabic text, we will use the goarabic library, which
will be enough to include in our program.

go get github.com/01walid/goarabic

2. The go get command places the output of this library in the pkg
folder with the same path as its link on github, ie it will be placed in a

subfolder named 01walid inside the github.com folder which is a
subfolder within the working folder, so it can be included directly in
our project. the shape:

import "github.com/01walid/goarabic"

Note that the path to import this library is the same as its link on
github.

This makes it easy to share code libraries and enrich the language
libraries themselves. It is very important that your project follows the
same curriculum, especially if it is a library.
Configuring the work environment

For Linux or Mac OS, for example, you can create a folder named
work inside your Home folder by typing a command:

mkdir $ HOME / work

Then make the latter a Go work environment by creating an
environment variable named GOPATH (case sensitive) that
indicates:

export GOPATH = $ HOME / work

Of course to make this variable permanent even after rebooting, you
will have to type it in bashrc. (If you are using a bash shell, or a zshrc
file. If you are using a zsh shell, for example, files that are inside
your home folder HOME $).

If you're on Windows, just add a variable called GOPATH by going
to:

System Properties (System -> Advanced system settings)
Then click on Environment Variables

Then add the variable from the System variables section as
shown below.

For example, if your work folder in Windows is C: \ Projects \ Go, you
should add it like this:

If the selected path for your work folder is shown, you have
successfully installed and configured Go.
Bonus

What if we can make the executables we write or download via the
go get command available directly to us in the command line window
without browsing them every time?

For example, let's say we want to use the ha tool written in Go, to
convert Markdown files into HTML ready to be pasted into another
editor, we bring the tool:

go get github.com/HsoubAcademy/ha

Since the ha tool is an executable program, the go get command will
move it directly to the bin folder within the work environment.

But we don't want to navigate to the bin folder inside the working
folder to use it, just want to type ha in the command line directly to
take advantage of the tool and use it even if we are in a free folder.

Since Go places the output of the executables in the bin folder under
the working folder, it is enough to add the bin folder path to the PATH
environment variable paths so that you have everything! Even your
own executive programs you write yourself.

For Linux or Mac OS users, this is possible by adding the bin folder
path within the working folder to the PATH environment variable:

export PATH = $ PATH: $ GOPATH / bin

For Windows users, add the bin folder path within the working folder
to the PATH environment variable by going to:

System Properties (System -> Advanced system settings)
Then click on Environment Variables
Find the Path value in the System variables section and press

edit and add the path to the end of the power preceded by a
semicolon (;) as shown below.

Now you will find that everything in the bin folder of programs and
tools is available to you, including the ha tool we mentioned earlier
(try opening a new command line window and typing the ha
command).

Chapter III
Writing the first program

What does Go programming look like? How do I run a program
written in Go? This is what we will learn during this chapter, and
before continuing the lesson, I like to make sure that you followed
the previous two chapters first.

Welcome to the world

We will try to follow the habit of learning programming languages,
which is simply to write the phrase "Hello World" (in English "Hello
World") in the language to be learned, simply this is what the
program will appear in the Welcome to the world in Go:

package main
import "fmt"
func main () {

fmt.Print ("Welcome to the world \ n")
}

Place this in a file named helloworld.go inside a folder named
hellogo, for example, under Path:

$ GOPATH / src / github.com / YOUR_USER /

Where GOPATH $ is the path to your work environment, see
Lesson 2 to understand how it works.

Change YOUR_USER to your username on, for example,
github.com or a code management service.

So the final path to the new file we created will be:

$ GOPATH / src / github.com / YOUR_USER / hellogo /
helloworld.go

All you have to do now is navigate to the file path and type go run
helloworld.go

$ go run helloworld.go
Welcome to the world

If your command line terminals do not support Arabic, you may find
that the Arabic script is inverted and the letters are intermittent.This
is fine at the moment, but note that Go has accepted the Arabic
characters inside the code text and handled them normally, because
everything you consider unicode by default.

Let's explain the program line by line:

package main

Simply:

Each Go code file must belong to a package.
Each Go package must belong to a folder.
Two packages cannot exist at the same folder level, but several

files can belong to the same package (that is, a folder with multiple

files), and a package can exist within another package but each in a
subfolder separately.

In our previous example, we gave main as the name of our package,
which is a special name, in which the compiler of the Go language
treats this package as the program entry, that is, the instructions in
this package are run first. We preceded the package name with the
keyword complete package.

import "fmt"

import: another keyword meaning "import" or "collect" the Doe
library or Doe package.

"fmt" is an abbreviation for format or formatting, a standard library
that comes with the installation of Go, for building and printing text.
Note that the name of the libraries or packages to be imported is
always enclosed in quotation marks "".

func main () {

Here we created a function called main :

To create the function, we used the func key, a space, and the
function name.

Like the main package, the main function is also treated specially
by the compiler, where it is considered the entry point of the program
(Entry point), that is, the instructions in this particular function,
specifically within the main package, are run first, unless there is
another function Called init (), which we will discuss in other lessons.

Like Javascript and other languages,} opens the function body.

fmt.Print ("Welcome to the world \ n")

Here we used the "fmt" package we imported above, to use any
package in Go enough to write its name, then a dot, and then the

name of the function you want to use from that package, in this case,
we simply wanted to print the text "Hello world" and go back to the
line, So we used the Print function and sent it the value "n \ hello":

We passed the value in quotation marks "" because it is a string.
We ended our text string with the \ n tag, a special tag in most

programming languages, meaning "new line", which we used to
return to the line.

We pass the values and coefficients of functions by placing them
in parentheses directly next to the function name.

}

We closed the main function object using the {sign, which means
that the instructions for this function have ended.

Notice the absence of the semicolon ";" After the end of each
instruction, it is not needed in Go.

The concept of Packages in Go

Packages are a simple way to split your program into smaller pieces
divided by purpose or function. Packages can be referred to as
"libraries" or modules.

Go follows the following rules in how to split a program into
packages:

A package is often a folder within your project that contains files
named after the package.

You must have at least one package in any program or library.
If the program is an executable program (not a library), then a

package called main (ie package main) should be the program's
entry as seen in our first example.

As a reminder of the above:

Each Go code file must belong to a package.
Each Go package must belong to a folder.
Two packages cannot exist at the same folder level, but multiple

files can belong to the same package (that is, a folder with multiple
files).

A package can exist inside another package but each in a
subfolder separately.

The main folder of your project can contain one package, only
one, the rest of its packages can be located in subfolders.

The absence of a main package from a program makes it a
library only and not an existing operating program itself.

When writing packages, any function, variable, or structure name
that begins with a capital letter (Uppercase) means that this function
/ variable / structure is generally available to all who import this
package via the import keyword. Any lowercase function / variable
name means that it is private and will not be exported (will not be
available) to other packages and programs.

In our previous example, the "fmt" package provided a print function
to us, noting that Print starts with a capital letter U (Uppercase). It
was just enough to write [...] fmt.Print
Welcome to the library

What if we want to say "Hello world" in more than one project?
Perhaps it would be better to make "Hello world" printing in a
separate library that we import into other projects. This is just an
example of how to build a library in Go. Of course, you don't need a
library. All you do is "Hello world."

Let's try to write this in a simple function, call it SayHello and leach it
in a special package, call it sayhello.

Let's build this library in a separate project, to be a library that can be
brought in more than one program or other project. We will call the
project sayhello, ie the same package name to facilitate it. We will
not need a package main because we will build a library only and not
an executive program itself.

So create a new project folder under Path:

$ GOPATH / src / github.com / YOUR_USER /

The same way that we explained earlier.

Create a file named sayhello.go under the sayhello folder, so the file
path looks like this:

$ GOPATH / src / github.com / YOUR_USER / sayhelo / sayhello.go

Now, open the sayhello.go file with your favorite text editor and then
start writing our amazing function.You are not supposed to
understand everything right now. The purpose is to explain the
concept of packages and libraries, yet we will try to explain the
instructions of this function:

package sayhello

// SayHello returns Hello World in Arabic.
func SayHello () string {

return "Welcome to the world \ n"
}

Note that our function is not much different from the "Hello world"
program we first wrote:

We used package sayhello instead package main.

We called the func () function SayHello instead of (func main).
Note that we made the function name begin with a capital letter
(Uppercase) because we want to export this function and make it
available to other projects that retrieve the sayhello package.

We have declared that the function returns a text string by typing
the keyword string to the right of the function.

We returned the text string "n \ hello world" via the keyword return
instead of printing it using the fmt library as we did the first time.

We now have "Welcome to the World" in the form of a library! But
how do we make it feasible? Ie how do we put it in the pkg folder so
that the rest of the projects can bring and benefit from it?

All we have to do is type go install inside the sayhello project folder.

Of course you will not be able to run this library via the command go
run sayhello.go like we did or once, because what we wrote this time
is a library and not an executive program!
Check out the "Hello world" library

Does our function work well? How can we check our Go programs
and packages? Does the "Hello world" library really print "Hello
world"? Let's make sure by writing an automated check of this
function!

In the Go language:

Unit testing can be written easily. It is enough to create a file with
the same name as the file you want to test and add test_.

You can examine a particular function by simply typing Test and
then the name of the function.

In this case, in the same path as the sayhello project, create a file
named sayhello_test.go next to the same sayhello.go file to test the

sayhello package.

Open your sayhello_test.go file with your favorite text editor. All we
have to do to try our function is to fetch it and check if the print result
is actually "Hello world!" As shown in the following code:

package sayhello

import "testing"

func TestSayHello (t * testing.T) {
greeting: = SayHello ()
if greeting! = "Welcome to the world \ n" {

t.Error ("TEST FAILED!")
}

}

In the above code:

By default, we imported the standard "testing" package provided
by Go for purposes of creating automated checks.

Since we want to check the SayHello function, we have created
the TestSayHello function with its pass-through test.That is, this is a
"check state", you don't have to understand this expression right
now, you can ignore it. The purpose is to understand how automated
checks work in Go.

Within this function, we simply call our SayHello function and check if
the value it returns is "n \ hello" if it is, the scan passes safely and we
will not print anything, and if not, type "TEST FAILED" using the t

operator Of the standard testing package using the Error function,
which in turn tells that this scan state has failed.

Now, in the same folder you are in, simply type go test to check our
sayhello package! You should receive a result similar to this:

PASS
ok github.com/01walid/sayhello 0.001s

You can add v- or cover-- to the previous command to print more
information about the compiler checks, for example go test -v --
cover

=== RUN TestSayHello
--- PASS: TestSayHello (0.00s)
PASS
coverage: 100.0% of statements
ok github.com/01walid/sayhello 0.001s

Note that we get coverage: 100.0%! This means that our tests cover
all the functions we have written in this project (since we have only
one function and one test, the result is normal), it is always advisable
to keep the coverage rate of tests high in your programs, so as to
ensure that their stability is good and reliable.

Create a documentation for the "Hello world"
library

We finished our amazing library, we made sure its work was correct,
what if we could generate and share documentation of it? You won't
need much to do that!

All you have to do is type the command godoc -http =: 6060 and
then visit localhost: 6060 on your browser! You'll need to navigate to

document your library privately by increasing

http: // localhost: 6060 / pkg / github.com / YOUR_USER /
sayhello /

Of course change YOUR_USER to your username, just like the
library path in your $ GOPATH environment.

Using the "Welcome to the World" Library

Let's use this library in our first program.

package main

import "fmt"
import "github.com/01walid/sayhello"

func main () {
fmt.Print (sayhello.SayHello ())

}

We just brought our new library by typing:

import "github.com/YOUR_USER/sayhello"

Then use it by calling the SayHello function inside fmt.Print instead
of typing "Hello world" directly:

fmt.Print (sayhello.SayHello ())

Now run the program again by typing go run helloworld.go, that's it!

Congratulations on your first program and library using Go!

Bonus

In adding this lesson, I chose to refer to some popular script editor
plugins, which would make it easier for you to programmatically go
with Go.

Here you will find a list of these add-ons.

Conclusion

In this lesson, we learned how to write a program using Go, and then
make it a library rather than leaving it in its executive form.

It is important to make your programs a collection of libraries
separate by purpose, rather than having everything nested in a
single package or in an executable program. As we have seen,
creating an executable program is as simple as writing a file with
package main, then func main, and invoking the rest of the
packages. Good and unit tests.

In this lesson, the library was completely separate from the executive
program. Your future projects will most likely be divided into
packages / libraries within the project folder itself and not necessarily
in another folder / project, but the concept is the same.

We have also seen that comments in Go are an excellent way to
generate documentation with minimal effort, so as a programmer you
should not neglect it and pay attention to it and its details.

All this was easy! Perhaps you hear these things Vtzaf (tests, docs,
cover .. Etc.) But I deliberately introduced these concepts in the first
lessons to see that nothing worth running away from. High-quality
programs are merely polite behaviors and practices that are in

constant steps that you should get used to from now and make them
a development / programming method.

In the next lessons we will look at the types of variables, structuring
data, how to create a variable, loops and conditional statements.

Chapter IV
the rules

The Go programming language was created to get the job done
easily.
Go has concepts similar to Imperative Languages and Static typing.
It is also fast in compilation, quick to run and implement. Large and
complex.
Go has a great standard library and an enthusiastic and active
software community.

In this article, we will explain the basics of the Go language in an
easy and simple way, and deal with some important concepts. The
code in this chapter is interconnected, but we have broken it down
into sections and have titles for these parts, and there are lots of
direct comments on the code.

The main topics covered in this chapter are as follows:

- Write comments.
- Libraries and import.
- Functions.
- Data types.
- Named return values.
- Variables and memory.
- Control sentences.
- Generate functions.
- Deferred implementation.
- Interfaces.
- Multiple inputs.
- Error handling.
- Simultaneous implementation.
- Web

Write comments:

To write a one-line comment

// single line comment

Type a comment with more than one line

/ * Multi-
line comment * /

Libraries and import

Each source file starts with the keyword packag. The main keyword
is used to identify the file as an operational file, not a library.

package main

To import an office package into the file, we use the Import
instruction in the following way:

import (
"fmt" // package in the standard language library
"io / ioutil" // I / O functions are applied
m "math" // We use the letter m to shorten the name of the

mathematical functions library
"net / http" // web server
"os" // functions at the operating system level such as handling

file s
"strconv" // Text conversions

)

Functions

Functions are defined by the word func followed by the function
name.
The main function is private, and is the entrance to the program's
executable file (the Go language uses ornate braces {} to define
parts / blocks).

func main () {
// To output text on the main output unit (stdout), we use the Println
function in the fmt library
fmt.Println ("Hello world!")
// Call a function from the same current package
beyondHello ()
}

Functions need parentheses that receive Parameters, and even in
the absence of parameters, parentheses are required.

func beyondHello () {
// Variable declaration (variable must be declared before using it)

var x int
// Give value to the variable

x = 3
// Short definition using: = Includes variable definition, specifying its
type and giving it valu e

y: = 4
// A function that returns two separate values
sum, prod: = learnMultiple (x, y)

// Print and output in a simple and direct
fmt.Println ("sum:", sum, "prod:", prod)
learnTypes ()

}

The function definition can have multiple coefficients and return
values. For example, learnMultiple takes the coefficients x and y and
returns two sum and prod values of type Int.

func learnMultiple (x, y int) (sum, prod int) {
// Separate the returned values with a regular comma

return x + y, x * y
}

Data Types

func learnTypes () {
// Short tariffs usually perform the desired purpose
// Define a text variable using a double quotation mark
str: = "Learn Go!"

// Define a text variable using a single quotation mark
s2: = `A" raw "string literal can include line breaks.`

// Define a variable of type rune which is another name for the type
int32 and the variable of this type contains unicode
g: = 'Σ'

// Float
f: = 3.14195

// Definition of Complex Number (Complex)
c: = 3 + 4i
// Define variables using var
var u uint = 7 // natural number (positive integer)
var pi float32 = 22. / 7 // A decimal of 32 bits

// Short definition (byte is another name for uint8)
n: = byte ('\ n')

// Arrays have a fixed and fixed size at compile time
// Defines an int array of 4 elements with an initial value of zero

var a4 [4] int

// Define an array of 3 elements with values 3, 1 and 5
a3: = [...] int {3, 1, 5}

Go offers a data type called Slices. Slices have dynamic size. Arrays
and segments have advantages but use cases for segments are
more common.
The following instruction defines a segment of type int
// Note the difference between the matrix and the chip definition,
where when the chip is defined there is no number that determines
its siz e

s3: = [] int {4, 5, 9}

// Define an int type with four elements with zero values
s4: = make ([] int, 4)

// Define only, and there is no selection
var d2 [] [] float64

// Method to convert type of text to slide
bs: = [] byte ("a slice")

By the nature of dynamic slides, it is possible to add new elements to
the slide by using the built-in append function. First pass the slide
that we want to add and then the elements we want to add, see the
example below.

s: = [] int {1, 2, 3}
s = append (s, 4, 5, 6)

// A slice will be printed with the following contents [1 2 3 4 5 6]
fmt.Println (s)

To add a slide to another slide, we pass the two segments of the
function instead of passing individual elements, and follow the
second slide with three points as in the following example.

s = append (s, [] int {7, 8, 9} ...)
// A slice will be printed with the following contents [1 2 3 4 5 6 7 8 9]

fmt.Println (s)

The following instruction defines the p and q variables as Pointers on
two int-type variables that contain two returned values from the
learnMemory function:

p, q: = learnMemory ()

When an asterisk precedes a cursor, it means the value of the
variable to which the cursor refers, ie in the following example the
values of the two variables returned by the learnMemory function:

fmt.Println (* p, * q)

Maps in Go are dynamic, modifiable arrays that are similar to the
type of dictionary or hashtags in other languages.

/ * Here we know a map whose key is text type, and the values of
numeric elements. * /

m: = map [string] int {"three": 3, "four": 4}
m ["one"] = 1

Unused variables go wrong. The underline in the following way
makes you use the variable but ignores its value at the same time:

_, _, _, _, _, _, _, _, _, _ = str, s2, g, f, u, pi, n, a3, s4, bs

This method is usually used to ignore a return value from a function.
For example, you can ignore the error number returned from the
os.Create file creation function, which states that the file already
exists, and always assumes that the file is created:

file, _: = os.Create ("output.txt")
fmt.Fprint (file, "By the way, this is the write function in a file")
file.Close ()

fmt.Println (s, c, a4, s3, d2, m)

learnFlowControl ()
}

Named return values

Unlike other languages, functions can have named return values.
Where the name is returned to the value of the function in the line of
the definition of the function, this feature allows to return easily from
any point in the function in addition to the use of the word return only
without mentioning anything after:

func learnNamedReturns (x, y int) (z int) {
z = x * y

// Here we just wrote the word return and implicitly means returning
the value of the variable z

return
}

Note: The Go language relies heavily on garbage collection. Go has
indicators but no calculations (you can mistake an empty cursor, but
you can't increase the cursor).
Variables and memory

The variables p and q below are indicators of the int type and
represent return values in the function. When defined, the cursors
are empty; however, the use of the new built-in function makes the
value of the numeric variable that p refers to zero, and therefore
takes up space in memory; that is, p is no longer empty.

func learnMemory () (p, q * int) {
p = new (int)

// Define a slice of 20 elements as a single unit in memory
s: = make ([] int, 20)

// Give value to an item
s [3] = 7
// Define a new local variable at the function level
r: = -2
// Returns two values from the function, which are memory
addresses for s and r variables, respectively.
return & s [3], & r

}

func expensiveComputation () float64 {
return m.Exp (10)

}

Control sentences

Conditional sentences require ornate brackets and do not require
parentheses.

func learnFlowControl () {
if true {

fmt.Println ("told ya")
}

if false {
// Pout.

} else {
// Gloat.

}

We use the switch statement if we need to write more than one
conditional sequence.

x: = 42.0
switch x {
case 0:
case 1:
case 42:

case 43:
default:
}

As a conditional sentence, the for clause does not take parentheses.
The variables defined in the for clause are visible at the sentence
level.

for x: = 0; x <3; x ++ {fmt.Println ("iteration", x)
}

The for statement is the only iteration statement in the Go language
and has another form in the following way :

for {// infinite repetition
// We can use break to stop repetition

break
// We can use continue to go for the next iteration

continue
}

You can use range to pass over elements of an array, slide, text,
map, or channel Channel range returns one value when using a
channel, and two values when using a slide, matrix, text, or map.

// Example:
for key, value: = range map [string] int {"one": 1, "two": 2,

"three": 3} {
// We print the value of each element in the map

fmt.Printf ("key =% s, value =% d \ n", key, value)
}

Use the underscore vs. return value if you only want the value, as
follows:

for _, name: = range [] string {"Bob", "Bill", "Joe"} {
fmt.Printf ("Hello,% s \ n", name)

}

We can use the short definition with the conditional statement so that
a variable is defined and then checked in the condition statement.
Here we define a variable y, give it a value, and then place the
sentence condition so that they are separated by a semicolon .

if y: = expensiveComputation (); y> x {
x = y

}

We can define fake anonymous functions directly in the code ”

xBig: = func () bool {
// We defined the following variable x before the previous switch
statement

return x> 10000
}
x = 99999

// The xBig function now returns the true value
fmt.Println ("xBig:", xBig ())
x = 1.3e3

// After modifying the value of x to 1.3e3 which is equal to 1300 (that
is, greater than 1000), the xBig function returns false

fmt.Println ("xBig:", xBig ())

In addition to the above, it is possible to define the phantom function
and call it in the same line and pass it on to another function
provided that it is called directly and the result type is consistent with
what is expected in the function parameter.

fmt.Println ("Add + double two numbers:",
func (a, b int) int {

return (a + b) * 2
} (10, 2))

goto love
love:

learnFunctionFactory () // A function that returns a function
learnDefer () // Snooze
learnInterfaces () // Working with interfaces

}

Generate functions

We can treat functions as separate objects. For example, we can
create one function and the return value is another.

func learnFunctionFactory () {

The following two methods of printing the sentence are the same,
but the second method is clearer and more readable and common.

fmt.Println (sentenceFactory ("summer") ("A beautiful",
"day!"))

d: = sentenceFactory ("summer")
fmt.Println (d ("A beautiful", "day!"))

fmt.Println (d ("A lazy", "afternoon!"))
}

Decorators are found in some programming languages, and in the
same concept in Go so that we can pass data to functions.

func sentenceFactory (mystring string) func (before, after
string) string {

return func (before, after string) string {
return fmt.Sprintf ("% s% s% s", before, mystring, after)

}
}

Deferred execution

We can use the delay function in functions so that we perform an
action before returning the return value, and if more than one is
written, the execution of these actions is the opposite, as in
learnDefer:

func learnDefer () (ok bool) {
// Deferred instructions are executed before the function returns the
result.

defer fmt.Println ("deferred statements execute in reverse (LIFO)
order.")

defer fmt.Println ("\ nThis line is being printed first because")
// Postponement is typically used to close a file after opening it.

return true
}

Interfaces

Here we define a function called Stringer that contains one function
called String; then we define a two-digit structure of int type named x
and y.

type Stringer interface {
String () string

}
type pair struct {

x, y int
}

Here we define the String function as a pair, becoming a pair for the
implementation of the Stringer interface. The variable p below is
called the receiver. Notice how to access the pair structure fields by
using the structure name followed by a period and then the field
name.

func (p pair) String () string {
return fmt.Sprintf ("(% d,% d)", p.x, p.y)

}

Semicolons are used to create an element of Structs. We use the
short definition (using: =) in the example below to create a variable
named p and specify its type in the pair structure.

func learnInterfaces () {
p: = pair {3, 4}

// We call the pair's String function
fmt.Println (p.String ())
// We define a variable as i of the interface type previously defined
Stringer

var i Stringer
// This equality is correct, because pair Stringer is applied
i = p
/ * We call the String function of the variable i of type Stringer and
get the same result as before * /
fmt.Println (i.String ())

/ * When passing the preceding variables directly to the print and
output fmt functions, these functions call the String function to print
the representation of the variable. * /
// The following two lines give the same preprint result
fmt.Println (p)
fmt.Println (i)

learnVariadicParams ("great", "learning", "here!")
}

Multiple inputs

It is possible to pass variable numbers of functions.

func learnVariadicParams (myStrings ... interface {}) {
/ * The following iteration passes on data input elements of the
function. The underline here means ignoring the cursor of the item
we're passing through. * /

for _, param: = range myStrings {
fmt.Println ("param:", param)

}

/ * Here we pass the input of the variable-number function as a
parameter of another function (for Sprintln) * /

fmt.Println ("params:", fmt.Sprintln (myStrings ...))

learnErrorHandling ()
}

Errors Handling

The keyword “ok,” is used to determine whether a statement is
correct. If an error occurs, we can use err to find out more details
about the error.

func learnErrorHandling () {
m: = map [int] string {3: "three", 4: "four"}
if x, ok: = m [1]; ! ok {

// ok Here it will be false because number 1 is not on the map m
fmt.Println ("no one there")

} else {
// x will be the value in the map

fmt.Print (x)
}

/ * Here we try to convert a text value to a number which will result in
an error, and we print out the error details if err is not nil * /

if _, err: = strconv.Atoi ("non-int"); err! = nil {
fmt.Println (err)

}
learnConcurrency ()

}

// given here is a channel type, which is an object to secure
concurrent connections
func inc (i int, c chan int) {
// When a channel type element appears on the north, the <- means
transmit

c <- i + 1
}

Concurrent execution

We use the preceding function to make a numerical addition to some
numbers in conjunction. We use make as we did at the beginning of
the article to create a variable without specifying a value for it.

func learnConcurrency () {
// Here we create a channel-type variable named c

c: = make (chan int)
/ * We start by creating three concurrent Go functions. The numbers
will be incremented simultaneously (in parallel if the device is
configured to do so). * /
// All transmissions will go to the same channel
// Go here means starting a new function

go inc (0, c)
go inc (10, c)
go inc (-805, c)

// Then we make three readings from the same channel and print the
results.
/ * Note that there is no order of read access from the channel, and
also note that when the channel appears to the right of the operation
<- it means that we are reading and receiving from the channel. * /

fmt.Println (<- c, <-c, <-c)

// New channel with text
cs: = make (chan string)
// Channel contains text channels
ccs: = make (chan chan string)

// Send a value of 84 to channel c
go func () {c <- 84} ()
// Send wordy to channel cs
go func () {cs <- "wordy"} ()

/ * The Select statement is similar to the switch statement, but in
each case it contains a process for a channel that is ready to
communicate with. * /
select {
// The value received from the channel can be saved in a variable.

case i: = <-c:
fmt.Printf ("it's a% T", i)

case <-cs:
fmt.Println ("it's a string")

// Empty channel but ready to communicate
case <-ccs:

fmt.Println ("didn't happen.")
}

// Web programming
learnWebProgramming ()

}

Web

We can start a web server using one function from the http package.
In the first parameter of the ListenAndServe function, we pass the
TCP address to listen, and the second parameter is an http handler.

func learnWebProgramming () {
go func () {

err: = http.ListenAndServe (": 8080", pair {})
// We print errors if they exist.
fmt.Println (err)

} ()

requestServer ()
}
// Make the pair a http handler by applying its only function
called ServeHTTP
func (p pair) ServeHTTP (w http.ResponseWriter, r *
http.Request) {
// Follows the Write function of the http.ResponseWriter
package and we use it to return a reply to the http request
w.Write ([] byte ("You learned Go in Y minutes!"))
}

func requestServer () {
resp, err: = http.Get ("http: // localhost: 8080")
fmt.Println (err)
defer resp.Body.Close ()
body, err: = ioutil.ReadAll (resp.Body)

fmt.Printf ("\ nWebserver said:`% s` ", string (body))

Chapter VI
Create Backend

Go programming development began with an experiment from
Google engineers to avoid some of the complexities of other
programming languages while taking advantage of their strengths.
Go is constantly evolving with the participation of an increasingly
open source community.

The Go programming language is intended to be easy, but Go code
writing conventions can be difficult to understand. In this lesson, I will
show you how to start all my software projects when I use Go, and

how to use the expressions provided by this language. We will
create a backend service for the web application.
Setting up the work environment

The first step is, of course, installing Go. Go can be installed from
official repositories on Linux distributions; for example for Ubuntu:

sudo apt install golang-go

Go versions in official repositories are usually slightly older than
those on the official website, but they do work; You can install newer
versions on Ubuntu (here) and Centos (here).

Mac OS users can install the language via Homebrew:

brew install go

The official site also contains language installation executables on
most operating systems, including Windows.

Make sure Go is installed by executing the following command:

go version

Example of the result of the above command (on Ubuntu
distribution):

go version go1.6.2 linux / amd64

- Links to install on Windows and set up paths -

There are plenty of text editors and plugins available for writing Go
codes. I personally prefer Sublime Text and GoSublime, but Go's
writing method makes it easy to use regular text editors especially
for small projects. I work with professionals who spend the whole

day programming in the Go language using the Vim text editor,
without any addition to highlighting the syntax highlighting. Surely
you will only need a simple text editor to start learning Go.
new project

If you have not created a working folder during the installation and
setup of Go, the time is right.
Go tools expect all the code to be on the $ GOPATH / src path, so
our work will always be in this folder. The Go toolkit can also address
hosted projects on sites such as GitHub and Bitbucket if they are set
up.

For the purposes of this lesson, we will create a new empty
repository on GitHub and name it “hello” (or any name that suits
you). We create a folder within the GOPATH folder to receive
repository files (replace your-username with your GitHub username):

mkdir -p $ GOPATH / src / github.com / your-username
cd $ GOPATH / src / github.com / your-username

We copy the repository within the folder we created above:

git clone git@github.com: your-username / hello
cd hello

We will now create a file called main.go to contain a short program in
Go:

package main

func main () {
println ("hello!")

}

Run the go build command to drain all the contents of the current
folder. An executable file with the same name will be produced; you
can then request that it be run by mentioning its name as follows:

go build
./hello

The result:

hello!

Despite years of development in Go, I still start my projects in the
same way: an empty Git repository, main.go file and a few
commands.

Any application that follows the usual methods of organizing the Go
code becomes easily installable with the go get command. For
example, if you deposited the file above and pushed it into the Git
repository, anyone with a Go work environment can perform the
following two steps to run the program:

go get github.com/your-username/hello
$ GOPATH / bin / hello

Create a Web server

Let's make our previous simple program a web server:

package main

import "net / http"

func main () {
http.HandleFunc ("/", hello)

http.ListenAndServe (": 8080", nil)
}

func hello (w http.ResponseWriter, r * http.Request) {
w.Write ([] byte ("hello!"))

}

There are a few lines that need to be explained.

First we need to import the net / http package from the Go library:

import "net / http"

Then, install the Handler function in the root path of the Web server.
Http.HandleFunc handles the initial Http request prompt in Go,
ServeMux.

http.HandleFunc ("/", hello)

The hello function is of type http.HandlerFunc that allows the use of
regular functions as processing functions for HTTP requests. The
http.HandlerFunc functions have a special Signature signature (the
function signature is the passed data and the data types returned by
this function) and can be passed in a parameter to the HandleFunc
function that registers the passed function in the given parameter of
the ServeMux router, thus creating a web server, each time it arrives
A new request that matches the root path, creates a new copy of the
hello function.

The hello function receives a variable of the http.ResponseWriter
type that the wizard uses to generate an HTTP response and thus
generates a response to the client request via the Write function
provided by http.ResponseWriter. Since http.ResponseWriter.Write
takes a generic type of [] byte or byte-slice, we convert the hello
string to the appropriate type:

func hello (w http.ResponseWriter, r * http.Request) {
w.Write ([] byte ("hello!"))

}

Finally, we run a Web server on port 8080 via the
http.ListenAndServe function that receives two parameters, the first
is the Port port and the second is a processing function. If the value
of the second parameter is nil, then we want to use the default router
DefaultServeMux. This Synchronous call, or Blocking, keeps the
program running until the call is interrupted.

Run and run the program the same way as before:

go build
./hello

Open another command-line-terminal and send an HTTP request to
port 8080:

curl http: // localhost: 8080

The result:

hello!

It's simple. There is no need to install an external framework,
download Dependencies or create project structures. The executable
itself is an authentic Native code without operational credentials.
Furthermore, the Web server's standard library is geared to the
production environment with defenses against common
cyberattacks. This code can answer requests over the network
directly and without arguments.
Add new tracks

We can do more important things than just say hello. Let the entry be
a city name that we use to call the Weather API and redirect the
answer - temperature - in response to the request.
OpenWeatherMap provides a free and easy-to-use software
interface for climate forecasting. Register at the site for an API key.
Can query from OpenWeatherMap by cities. The API returns an
answer as follows (we slightly edited the result):

{
"name": "Tokyo",
"coord": {

"lon": 139.69,
"lat": 35.69

} ,
"weather": [

{
"id": 803,
"main": "Clouds",
"description": "broken clouds",
"icon": "04n"

}
],
"main": {

"temp": 296.69,
"pressure": 1014,
"humidity": 83,
"temp_min": 295.37,
"temp_max": 298.15

}
}

The variables in Go have static type, meaning that the type of data
stored by the variables should be declared before use. So we will
have to create a data structure to match the interface response
format. We don't need to store all the information, just keep the data
we care about. We are now content with the name of the city and the
expected temperature that comes with the Kelvin unit. We will define
a structure to represent the data we need from the climate forecast
service.

type weatherData struct {
Name string `json:" name "`
Main struct {

Kelvin float64 `json:" temp " `
} `json:" main "`

}

The type keyword defines a new data structure called weatherData
and declares it to be struct. Each field in variables of the struct type
contains a name (for example, Name or Main), a data type (string or
another anonymous), and a tag. The tags in Go are similar to the
Metadata metadata, and enable us to use the encoding / json
package to re-align the OpenWeatherMap response and save it in
our data structure. More code is required than in languages with
dynamic data types (i.e., a variable can be used as soon as we need
it without having to declare the data type) like Ruby and Python, but
it gives us the security of the data type.

We have defined a data structure. We now need a way to fill this
structure with data coming from the API; we will write a function for
this.

func query (city string) (weatherData, error) {
resp, err: = http.Get

("http://api.openweathermap.org/data/2.5/weather?
APPID=YOUR_API_KEY&q=" + city)

if err! = nil {
return weatherData {}, err

}

defer resp.Body.Close ()

var d weatherData

if err: = json.NewDecoder (resp.Body) .Decode (& d); err! = nil {
return weatherData {}, err

}

return d, nil
}

The function takes a string of characters representing the city and
returns a variable of weatherData and error data structures. This is
the basic way to deal with errors in Go. Functions encapsulate
certain behavior, and this behavior can fail. For our example, the
GET request we send to OpenWeatherMap can fail for several
reasons, and the returned data may be the one we are waiting for. In
both cases, we return a non-nil error to the customer who is
expected to handle the error in the context of the request.

If the http.Get request succeeds, we postpone a request to close the
response board to execute after exiting the Scope function (i.e. after
returning from the HTTP request function), an elegant way to
manage resources. In the meantime we reserve the weatherData

structure and use json.Decoder to read the answer data and enter it
directly into our structure.

When the rework of the answer data is successful, we return the
weatherData variable to the caller with an empty error to indicate that
the operation was successful. We now proceed to associate that
function with the processing function of the request:
http.HandleFunc ("/ weather /", func (w http.ResponseWriter, r *
http.Request) {

city: = strings.SplitN (r.URL.Path, "/", 3) [2]

data, err: = query (city)
if err! = nil {

http.Error (w, err.Error (), http.StatusInternalServerError)
return

}

w.Header (). Set ("Content-Type", "application / json; charset =
utf-8")

json.NewEncoder (w) .Encode (data)
})

We define a processing function on the In-line line instead of defining
it separately. We use the strings.SplitN function to take all that exists
after / weather / in the path and treat it as a city name. We execute
the request and if we encounter errors that the customer knows
about using the http.Error utility, we stop the execution of the
function to indicate that the HTTP request is complete. If there is no
error, we tell the customer that we are sending JSON data to it and
use the json.NewEncode function to directly encode the
weatherData content in JSON format.

The blade is so elegant, it adopts a procedureural and easy to
understand. They cannot be interpreted and cannot bypass common
mistakes. If we move the "hello, world" processing function to the /
hello path and import the required packages, we will get the following
complete program:

package main

import (
"encoding / json"
"net / http"
"strings"

)

func main () {
http.HandleFunc ("/ hello", hello)

http.HandleFunc ("/ weather /", func (w http.ResponseWriter, r *
http.Request) {

city: = strings.SplitN (r.URL.Path, "/", 3) [2]

data, err: = query (city)
if err! = nil {

http.Error (w, err.Error (), http.StatusInternalServerError)
return

}

w.Header (). Set ("Content-Type", "application / json; charset =
utf-8")

json.NewEncoder (w) .Encode (data)
})

http.ListenAndServe (": 8080", nil)
}

func hello (w http.ResponseWriter, r * http.Request) {
w.Write ([] byte ("hello!"))

}

func query (city string) (weatherData, error) {
resp, err: = http.Get

("http://api.openweathermap.org/data/2.5/weather?
APPID=YOUR_API_KEY&q=" + city)

if err! = nil {
return weatherData {}, err

}

defer resp.Body.Close ()

var d weatherData

if err: = json.NewDecoder (resp.Body) .Decode (& d); err! = nil {
return weatherData {}, err

}

return d, nil
}

type weatherData struct {
Name string `json:" name "`
Main struct {

Kelvin float64 `json:" temp "`

} `json:" main "`
}

We run and execute the program in the same way as explained
above:

go build
./hello

We open another terminal and request the path http: // localhost:
8080 / weather / tokyo (Kelvin thermometer):

curl http: // localhost: 8080 / weather / tokyo

The result:

{"name": "Tokyo", "main": {"temp": 295.9}}

Query from multiple software interfaces

Perhaps more accurate temperatures can be obtained if we inquire
from several weather services and only average them. Most weather
service interfaces require registration. We will add Weather
Underground, so sign up for this service and find the authentication
keys necessary to use the API.

Since we want to have the same behavior from all services, it is
worthwhile to write this behavior in an interface.

type weatherProvider interface {
temperature (city string) (float64, error) // in Kelvin, naturally

}

We can now convert the query function from the previous
openWeatherMap to a data type that corresponds to the
weatherProvider interface. Since we do not need to save any status
to make an HTTP GET request, we will use an empty struct
structure, and we will add a short line in the new query function to
record what happens when you connect to the services for later
review:

type openWeatherMap struct {}

func (w openWeatherMap) temperature (city string) (float64, error) {
resp, err: = http.Get

("http://api.openweathermap.org/data/2.5/weather?
APPID=YOUR_API_KEY&q=" + city)

if err! = nil {
return 0, err

}

defer resp.Body.Close ()

var d struct {
Main struct {

Kelvin float64 `json:" temp "`
} `json:" main "`

}

if err: = json.NewDecoder (resp.Body) .Decode (& d); err! = nil {
return 0, err

}

log.Printf ("openWeatherMap:% s:% .2f", city, d.Main.Kelvin)

return d.Main.Kelvin, nil
}

We just want to extract the temperature (Kelvin) from the answer, so
we can define the struct structure on the Inline line. Otherwise, the
code is similar to the previous query function, but it is defined as the
Method method of the openWeatherMap structure. This method
allows us to use the Instance sample from openWeatherMap in
place of the weatherProvider interface.

We will do the same for Weather Underground. The only difference
with the previous service is that we will store the API key in a struct
and then use it in the function.

Note that Weather Underground does not process identical city
names as well as Open WeatherMap, which should be noted in
actual applications. We will not address this in our simple example.

type weatherUnderground struct {
apiKey string

}

func (w weatherUnderground) temperature (city string) (float64,
error) {

resp, err: = http.Get ("http://api.wunderground.com/api/" +
w.apiKey + "/ conditions / q /" + city + ".json")

if err! = nil {
return 0, err

}

defer resp.Body.Close ()

var d struct {

Observation struct {
Celsius float64 `json:" temp_c "`

} `json:" current_observation " `
}

if err: = json.NewDecoder (resp.Body) .Decode (& d); err! = nil {
return 0, err

}

kelvin: = d.Observation.Celsius + 273.15
log.Printf ("weatherUnderground:% s:% .2f", city, kelvin)
return kelvin, nil

}

We now have a weather service provider. Let us write a function that
queries the two and returns the average temperature. For the sake
of simplicity, we will stop querying if we have trouble getting data
from both services.

func temperature (city string, providers ... weatherProvider) (float64,
error) {

sum: = 0.0

for _, provider: = range providers {
k, err: = provider.temperature (city)
if err! = nil {

return 0, err
}

sum + = k

}

return sum / float64 (len (providers)), nil
}

Note that the function definition is very close to the definition of the
temperature function defined in the weatherProvider interface. If we
combine the weatherProvider interfaces into a data type and then
define a function called temperature on this type, we can create a
new type that combines the weatherProvider interfaces.

type multiWeatherProvider [] weatherProvider

func (w multiWeatherProvider) temperature (city string) (float64,
error) {

sum: = 0.0

for _, provider: = range w {
k, err: = provider.temperature (city)
if err! = nil {

return 0, err
}

sum + = k
}

return sum / float64 (len (w)), nil
}

Fabulous! We will be able to pass multiWeatherProvider to any
function that accepts weatherProvider.

We now associate the HTTP server with the temperature function to
obtain temperatures when a path with a city name is requested:

func main () {
mw: = multiWeatherProvider {

openWeatherMap {},
weatherUnderground {apiKey: "your-key-here"},

}

http.HandleFunc ("/ weather /", func (w http.ResponseWriter, r *
http.Request) {

begin: = time.Now ()
city: = strings.SplitN (r.URL.Path, "/", 3) [2]

temp, err: = mw.temperature (city)
if err! = nil {

http.Error (w, err.Error (), http.StatusInternalServerError)
return

}

w.Header (). Set ("Content-Type", "application / json; charset =
utf-8")

json.NewEncoder (w) .Encode (map [string] interface {} {
"city": city,
"temp": temp,
"took": time.Since (begin) .String (),

})
})

http.ListenAndServe (": 8080", nil)
}

Run the program, run it and request a web server link as we did
before. In addition to the JSON format in the application window, you
will find outputs from the server registrations we added above in the
window from which you ran the program.

./hello
2015/01/01 13:14:15 openWeatherMap: tokyo: 295.46
2015/01/01 13:14:16 weatherUnderground: tokyo: 273.15

$ curl http: // localhost: 8080 / weather / tokyo
{"city": "tokyo", "temp": 284.30499999999995, "took":
"821.665230ms"}

Make the queries run in parallel

We limit ourselves to the hour by querying the interfaces
consecutively, one by one. There is nothing to stop us from querying
both interfaces at the same time, which will reduce their response
time.

We take advantage of Go's simultaneous playback capabilities
across Go sub-units, goroutines and Channels. We will place each
query in its own subunit and run it in parallel. We then combine the
answers into one channel and then calculate averages when all
queries are complete.

func (w multiWeatherProvider) temperature (city string) (float64,
error) {

// We create two channels, one for temperature and the other for
errors

// Each service provider adds a value to only one channel
temps: = make (chan float64, len (w))
errs: = make (chan error, len (w))

// For each ISP, we call an anonymous function. An unknown
function calls the dependent name temperature and then redirects
the result obtained.

for _, provider: = range w {
go func (p weatherProvider) {

k, err: = p.temperature (city)
if err! = nil {

errs <- err
return

}
temps <- k

} (provider)
}

sum: = 0.0

// We collect temperatures - or errors, if any - from each service
for i: = 0; i <len (w); i ++ {

select {
case temp: = <-temps:

sum + = temp
err: case = <-errs:

return 0, er r
}

}

// Return the heat as before
return sum / float64 (len (w)), nil

}

The time required to execute all queries now equals the time
required to get an answer from the slowest weather service; rather
than the sum of the durations of all queries as before. All we needed
to do was modify the behavior of multiWeatherProvider, which still
satisfies the needs of the simple and unparallel weatherProvider
interface.

	Beginning

